Vol. 8, Issue 3, March 2019,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

EMERGING APPLICATIONS ON DOUBLE N-FUZZY SOFT MARKOVIAN IDEALS STRUCTURES

Dr.S.V.Manemaran and Dr.R.Nagarajan

Professor, Department of Science and Humanities, Sri Ranganathar Institute of Engineering and Technology, Athipalayam, Coimbatore – 641 110, Tamilnadu, India Professor, Department of Science and Humanities, J J College of Engineering and Technology, Tiruchirappalli – 620 009, Tamilnadu, India

ABSTRACT: In this paper, we define a new type of double Markovian group (M(G)-group) action, called double N-fuzzy M(G)-group soft intersection (DNFGSI) action and double N-fuzzy M(G)-ideal soft intersection(DNFGSI) action on a soft set. This new concept illustrates how a soft set effects on a double N-fuzzy M(G)-group in the mean of union and inclusion of sets and its function as bridge among soft set theory, set theory and double N-fuzzy M(G)-group theory. We also obtain some analog of classical double N-fuzzy M(G)-group theoretic concepts for double fuzzy M(G)-group SI-action. Finally, we give the application of SU-actions on double N-fuzzy M(G)-group to M(G)-group theory.

KEYWORDS: Soft set, M(G)-group, double N-fuzzy M(G)-group SI-action, double N-fuzzy M(G)--ideal SI-action, soft pre-image, soft anti-image, α -inclusion.

AMS Mathematics Subject Classification: 03E70, 08E40.

1. INTRODUCTION

Soft set theory was introduced in 1999 by Molodtsov [22] for dealing with uncertainties and it has gone through remarkably rapid strides in the mean of algebraic structures as in [1, 2, 11, 14, 15, 16, 18, 25, 28]. Moreover, Atagun and Sezgin [4] defined the concepts of soft sub rings and ideals of a ring, soft subfields of a field and soft sub modules of a module and studied their related properties with respect to soft set operations. Operations of soft sets have been studied by some authors, too. Maji et al. [19] presented some definitions on soft sets and based on the analysis of several operations on soft sets Ali et al. [3] introduced several operations of soft sets and Sezgin and Atagun [26] studied on soft set operations as well. Furthermore, soft set relations and functions [5] and soft mappings [21] with many related

Vol. 8, Issue 3, March 2019,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

concepts were discussed. The theory of soft set has also wide-ranging applications especially in soft decision making as in the following studies: [6, 7, 23, 29].

Sezgin et.al [25] introduced a new concept to the literature of N-group called N-group soft intersection action. In this paper, we define a new type of double N-fuzzy M(G)-group action on a soft set, which we call double N-fuzzy M(G)-group soft intersection action and abbreviate as "double N-fuzzy M(G)-group SI action" which is based on the inclusion relation and union of sets. Since double N-fuzzy M(G)-group SU-action gathers soft set theory and set theory and double N-fuzzy M(G)-group theory, it is useful in improving the soft set theory with respect to double fuzzy M(G)-group structures. Based on this new notion, we then introduce the concepts of double N-fuzzy M(G)-ideal SU-action and show that if double fuzzy M(G)-group SU-action over U. Moreover, we investigate these notions with respect to soft image, soft pre-image and give their applications to double N-fuzzy M(G)-group theory.

2. PRELIMINARIES

In this section, we recall some basic notions relevant to near-ring modules and fuzzy soft sets. By a near-ring, we shall mean an algebraic system $(M(G),+,\bullet)$,

where (N_1) (M(G), +) forms a group (not necessarily abelian)

 (N_2) $(M(G), \bullet)$ forms a semi group and

$$(N_3)$$
 $(x + y)z = xz + yz$, for all $x,y,z \in M(G)$.

Throughout this paper, M(G) will always denote group. A normal subgroup H of M(G) is called a left ideal of M(G) if $g(s+h) - gs \in H$ for all $g \in M(G)$ and $h \in I$ and denoted by $H \triangleleft_{\ell} M(G)$. For a group M(G), the zero-symmetric part of M(G) denoted by $M(G)_0 = \{g \in M(G) \mid g0 = 0\}$.

Let (S,+) be a group and A: $M(G)\times S \rightarrow S$, $(g,s)\rightarrow s$.

(S,A) is called M(G)-group if for all $x,y \in S$,

- (i) x(ys) = (xy)s
- (ii) (x+y)s = xs+ys.

It is denoted by N^S . Clearly M(G) itself is an double fuzzy M(G)–group by natural operations. A subgroup T of $M(G)^S$ with M(G)T \subseteq T is said to be M(G)–sub group of S and denoted by T \le N^S. A normal subgroup T of S is called an M(G)–ideal of $M(G)^S$ and denoted

Vol. 8, Issue 3, March 2019,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

by a group. S and χ two M(G)–groups. Then h: S $\rightarrow \chi$ is called a double fuzzy M(G)–group homomorphism if $s, \delta \in S$, for all $g \in M(G)$,

- (i) $h((s+\delta)) = h(s)+h(\delta)$ and
- (ii) h(gs) = g(h(s)).

For all undefined concepts and notions we refer to (24). From now on, U refers to on initial universe, E is a set of parameters P(U) is the power set of U and $A,B,C \subseteq E$.

Definition 2.1: [22] A pair (F,A) is called a soft set over U, where F is a mapping given by $F: A \rightarrow P(U)$.

In other words, a soft set over U is a parameterized family of subsets of the universe U. Note that a soft set (F,A) can be denoted by F_A . In this case, when we define more than one soft set in some subsets A, B, C of parameters E, the soft sets will be denoted by F_A , F_B , F_C respectively. On the other case, when we define more than one soft set in a subset A of the set of parameters E, the soft sets will be denoted by F_A , G_A ,

Definition 2.2: [6] The relative complement of the soft set F_A over U is denoted by F_A^r , where F_A^r : $A \to P(U)$ is a mapping given as $F_A^r(a) = U \setminus F_A(a)$, for all $a \in A$.

Definition 2.3: [6] Let F_A and G_B be two soft sets over U such that $A \cap B \neq \emptyset$,. The restricted intersection of F_A and G_B is denoted by $F_A \uplus G_B$, and is defined as $F_A \uplus G_B = (H,C)$, where $C = A \cap B$ and for all $c \in C$, $H(c) = F(c) \cap G(c)$.

Definition 2.4: [6] Let F_A and G_B be two soft sets over U such that $A \cap B \neq \emptyset$,. The restricted union of F_A and G_B is denoted by $F_A \cup_R G_B$, and is defined as $F_A \cup_R G_B = (H,C)$, where $C = A \cap B$ and for all $c \in C$, $H(c) = F(c) \cup G(c)$.

Definition 2.5: [12] Let F_A and G_B be soft sets over the common universe U and ψ be a function from A to B. Then we can define the soft set $\psi(F_A)$ over U, where $\psi(F_A) : B \rightarrow P(U)$ is a set valued function defined by $\psi(F_A)(b) = \bigcup \{F(a) \mid a \in A \text{ and } \psi(a) = b\}$,

if
$$\psi^{-1}(b) \neq \emptyset$$
,

= 0 otherwise for all $b \in B$.

Here, ψ (F_A) is called the soft image of F_A under ψ . Moreover we can define a soft set $\psi^{-1}(G_B)$ over U, where $\psi^{-1}(G_B)$: A \to P(U) is a set-valued function defined by

Vol. 8, Issue 3, March 2019,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

 $\psi^{-1}(G_B)(a) = G(\psi(a))$ for all $a \in A$. Then, $\psi^{-1}(G_B)$ is called the soft pre image (or inverse image) of G_B under ψ .

Definition 2.6: [13] Let F_A and G_B be soft sets over the common universe U and ψ be a function from A to B. Then we can define the soft set $\psi^*(F_A)$ over U, where $\psi^*(F_A):B\to P(U)$ is a set-valued function defined by $\psi^*(F_A)(b)=\cap \{F(a)\mid a\in A \text{ and } \psi\ (a)=b\}$, if $\psi^{-1}(b)\neq\emptyset$.

$$= 0$$
, otherwise, for all b \in B.

Here, $\psi^*(F_A)$ is called the soft anti image of F_A under ψ .

Definition 2.7: [8] Let f_A be a soft set over U and α be a subset of U. Then, upper α-inclusion of a soft set f_A , denoted by f_A^{α} , is defined as $f_A^{\alpha} = \{x \in A : f_A(x) \supseteq \alpha\}$

Definition 2.8: Let X be a non-empty set. A mapping $f_s: X \to [-1,0]$ is called Negative fuzzy set [N-fuzzy set] in X.

3. DOUBLE N-FUZZY M(G) -GROUP SI-ACTION

In this section, we first define soft intersection action, abbreviated as SI-action on double N-fuzzy M(G)-group and double N-fuzzy M(G)-ideal structures with illustrative examples. We then study their basic results with respect to soft set operation.

Definition 3.1: Let S be a N-fuzzy M(G)–group and f_s be a soft set over U. Then f_s is called SI-action on double N-fuzzy M(G)–group over U if it satisfies the following conditions;

(DNFSG-1)
$$f_s((x+y)) \supseteq f_s(x) \cap f_s(y)$$

(DNFSG-2)
$$f_s(-x) \supseteq f_s(x)$$

(DNFSG-3) $f_s(gx) \supseteq f_s(x)$, for all $x,y \in S$ and $g \in M(G)$..

Example 3.2: Consider the module $M(G) = \{0,x,y,z\}$, be the near-ring under the operation defined by the following table:

+	0	X	у	Z
0	0	X	у	Z
X	X	0	Z	у
у	у	Z	0	X
Z	Z	у	X	0

•	0	X	У	Z
0	0	0	0	0
X	X	X	X	X
у	0	0	0	0
Z	X	X	X	X

Vol. 8, Issue 3, March 2019,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Let S = M(G) and S be the set of parameters

and $U = \left\{ \begin{bmatrix} -a & -a \\ 0 & -a \end{bmatrix} / a, b \in -Z_6 \right\}$, 2×2 matrices with $-Z_6$ terms, is the universal set.

We construct a fuzzy soft set.

$$f_{s}(0) = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -2 & -2 \\ 0 & -2 \end{bmatrix}, \begin{bmatrix} -3 & -3 \\ 0 & -3 \end{bmatrix} \right\}, \ f_{s}(x) = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -2 & -2 \\ 0 & -2 \end{bmatrix}, \begin{bmatrix} 3 & -3 \\ 0 & -3 \end{bmatrix} \right\},$$

$$f_{s}(y) = \left\{ \begin{bmatrix} -2 & -2 \\ 0 & -2 \end{bmatrix} \right\}, \text{ and } f_{s}(z) = \left\{ \begin{bmatrix} -2 & -2 \\ 0 & -2 \end{bmatrix} \right\}$$

Then one can easily show that the soft set f_s is a SI-action on double N-fuzzy M(G)–group

Proposition 3.3: Let f_s be a SI-action on double N-fuzzy M(G)–group over U. Then, $f_s(0) \supseteq f_s(x)$, for all $x \in S$.

Proof: Assume that f_s is SI-action over U. Then, for all $x \in S$,

$$f_s(0) = f_s((x-x)) \supseteq f_s(x) \cap f_s(-x) = f_s(x) \cap f_s(x) = f_s(x).$$

Theorem 3.4: Let S be a SI-action on double N-fuzzy M(G)-group and f_s be a soft set over U.

Then f_s is SI-action of double N-fuzzy M(G)-group over U if and only if

- (i) $f_s((x-y)) \supseteq f_s(x) \cap f_s(y)$
- (ii) $f_s(gx) \supseteq f_s(x)$, for all $x,y \in S$ and $g \in M(G)$.

Proof: Suppose f_s is a fuzzy SI-action on double N-fuzzy M(G)–group over U. Then, by definition-3.1,

$$f_s(xy) \supseteq f_s(y)$$
 and $f_s(m(x-y)) \supseteq f_s(x) \cap f_s(-y) = f_s(x) \cap f_s(y)$ for all $x,y \in S$

Conversely, assume that $f_s(xy) \supseteq f_s(y)$ and $f_s(m(x-y)) \supseteq f_s(x) \cap f_s(y)$, for all $x,y \in S$.

If we choose x=0, then $f_s(0-y) = f_s(-y) \supseteq f_s(0) \cap f_s(y) = f_s(y)$ by proposition-3.1.

Similarly $f_s(gy) = f_s(-(-y)) \supseteq f_s(-y)$, thus $f_s(-y) = f_s(y)$ for all $y \in S$.

Also, by assumption $f_s((x-y)) \supseteq f_s(x) \cap f_s(-y) = f_s(x) \cap f_s(y)$.

This completes the proof.

Theorem 3.5: Let f_s be a SI-action on double N-fuzzy M(G)–group over U.

- (i) If $f_s((x-y)) = f_s(0)$ for any $x,y \in S$, then $f_s(x) = f_s(y)$.
- (ii) $f_s((x-y)) = f_s(0)$ for any $x,y \in S$, then $f_s(x) = f_s(y)$.

Proof: Assume that $f_s(x-y) = f_s(0)$ for any $x,y \in S$, then

$$f_s(x) = f_s((x-y+y)) \supseteq f_s(x-y) \cap f_s(y)$$

Vol. 8, Issue 3, March 2019,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$= f_s(0) \cap f_s(y) = f_s(y)$$

and similarly,

$$f_s(gy) = f_s(n(y-x)+x)) \supseteq f_s(y-x) \cap f_s(x)$$

$$= f_s(-(y-x)) \cap f_s(x)$$

$$= f_s(0) \cap f_s(x) = f_s(x)$$

Thus, $f_s(x) = f_s(y)$ which completes the proof.

Similarly, we can show the result (ii).

It is known that if S is double N-fuzzy M(G)-group, then (S,+) is a group but not necessarily abelian. That is, for any $x,y \in S$, x+y needs not be equal to y+x. However, we have the following:

Theorem 3.6: Let f_s be SI-action on double N-fuzzy M(G)–group over U and x \in S. Then, $f_s(x) = f_s(0) \Leftrightarrow f_s(x+y) = f_s(y+x) = f_s(y)$ for all $y \in$ S.

Proof: Suppose that $f_s(x+y) = f_s(y+x) = f_s(y)$ for all $y \in S$. Then, by choosing y=0, we obtain that $f_s(x) = f_s(0)$.

Conversely, assume that $f_s(x) = f_s(0)$.

Then by proposition-3.1, we have

$$f_s(0) = f_s(x) \supseteq f_s(y), \forall y \in S....(1)$$

Since f_s SI-action on double N-fuzzy M(G)–group over U, then

$$f_s((x+y)) \supseteq f_s(x) \cap f_s(y) = f_s(y), \forall y \in S$$
. Moreover, for all $y \in S$

$$f_s(gy) = f_s(g(-x)+x)+y) = f_s(g(-x+(x+y))) \supseteq f_s(-x) \cap f_s(x+y)$$
$$= f_s(x) \cap f_s(x+y) = f_s(x+y)$$

Since by equation (1), $f_s(x) \supseteq f_s(y)$ for all $y \in S$ and $x,y \in S$, implies that $x+y \in S$. Thus, it follows that $f_s(x) \supseteq f_s(x+y)$. So $f_s(x+y) = f_s(y)$ for all $y \in S$.

Now, let $x \in S$. Then, for all $x, y \in S$

$$f_s((y+x)) = f_s((y+x+(y-y)))$$

$$= f_s((y+(x+y)-y))$$

$$\supseteq f_s(y) \cap f_s(x+y) \cap f_s(y)$$

$$= f_s(y) \cap f_s(x+y) = f_s(y)$$

Since $f_s(x+y) = f_s(y)$. Furthermore, for all $y \in S$

$$f_s(gy) = f_s(g(y+(x-x)))$$

Vol. 8, Issue 3, March 2019,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$= f_s((y+x)-x)$$

$$\supseteq f_s(y+x) \cap f_s(x)$$

$$= f_s(y+x) \text{ by equation (1)}.$$

It follows that $f_s(y+x) = f_s(y)$ and $sof_s(x+y) = f_s(y+x) = f_s(y)$, for all $y \in S$, which completes the proof.

Theorem 3.7: Let S be a near-field and f_s be a soft set over U. If $f_s(0) \supseteq f_s(1) = f_s(x)$, $\forall 0 \neq x \in S$, then it is SI-action on double N-fuzzy M(G)–group over U.

Proof: Suppose that $f_s(0) \supseteq f_s(1) = f_s(x)$ for all $0 \ne x \in S$. In order to prove that it is SIaction on double fuzzy M(G)–group over U, it is enough to prove that $f_s((x-y)) \supseteq f_s(x) \cap f_s(y)$ and $f_s(gx) \supseteq f_s(x)$.

Let $x, y \in S$. Then we have the following cases:

Case-1: Suppose that $x \neq 0$ and y = 0 or x = 0 and $y \neq 0$. Since S is a near-field, so it follows that nx = 0 and $f_s(gx) = f_s(0)$. Since $f_s(0) \supseteq f_s(x)$, for all $x \in S$, $sof_s(gx) = f_s(0) \supseteq f_s(x)$, and $f_s(gx) = f_s(0) \supseteq f_s(y)$. This implies, $f_s(gx) \supseteq f_s(x)$.

Case-2: Suppose that $x \ne 0$ and $y \ne 0$. It follows that $nx \ne 0$. Then, $f_s(gx) = f_s(1) = f_s(x)$ and $f_s(gx) = f_s(1) = f_s(y)$, which implies that $f_s(gx) \supseteq f_s(x)$.

Case-3: Suppose that x = 0 and y = 0, then clearly $f_s(gx) \supseteq f_s(x)$. Hence $f_s(gx) \supseteq f_s(x)$, $\forall x,y \in S$.

Now, let $x,y \in S$. Then x-y=0 or $x+y\neq 0$. If x+y=0, then either x=y=0 or $x\neq 0$, $y\neq 0$ and x=y. But, since $f_s(x+y) = f_s(0) \supseteq f_s(x)$, for all $x \in S$ it follows that $f_s((x+y)) = f_s(0) \supseteq f_s(x) \cap f_s(y)$. If $x+y\neq 0$, then either $x\neq 0$, $y\neq 0$ and $x\neq y$ or $x\neq 0$ and y=0 or x=0 and $y\neq 0$.

Assume that $x \neq 0$, $y \neq 0$ and $x \neq y$. This follows that $f_s((x-y)) = f_s(1) = f_s(x) \supseteq f_s(x) \cap f_s(y)$.

Now, let $x \neq 0$ and y=0. Then $f_s((x+y)) \supseteq f_s(x) \cap f_s(y)$. Finally, let x = 0 and $y \neq 0$.

Then, $f_s((x+y)) \supseteq f_s(x) \cap f_s(y)$. Hence $f_s(x-y) \supseteq f_s(x) \cap f_s(y)$, for all $x, y \in S$.

Thus, f_s is SI-action on double N-fuzzy M(G)–group over U.

Theorem 3.8: Let f_s and f_T be two SI-action on double N-fuzzy M(G)–group over U. Then $f_s \wedge f_T$ is soft SI-action on double N-fuzzy M(G)–group over U.

Proof: Let (x_1, y_1) , $(x_2, y_2) \in S \times T$. Then

$$f_{S \wedge T}(((x_1,y_1)-(x_2,y_2)))=f_{S \wedge T}((x_1-x_2,y_1-y_2))$$

Vol. 8, Issue 3, March 2019,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$= f_{S}(x_{1}+x_{2}) \cap f_{T}(y_{1}+y_{2})$$

$$\supseteq (f_{S}(x_{1}) \cap f_{S}(x_{2})) \cap (f_{T}(y_{1}) \cap f_{T}(y_{2}))$$

$$= (f_{S}(x_{1}) \cap f_{T}(y_{1})) \cap (f_{S}(x_{2}) \cap f_{T}(y_{2}))$$

$$= f_{S \wedge T}(x_{1},y_{1}) \cap f_{S \wedge T}(x_{2},y_{2})$$
And,
$$f_{S \wedge T}((g_{1},g_{2}),(x_{2},y_{2})) = f_{S \wedge T}(g_{1}x_{2},g_{2}y_{2})$$

$$= f_{S}(g_{1}x_{2}) \cap f_{T}(g_{2}y_{2})$$

$$\supseteq f_{S}(x_{2}) \cap f_{T}(y_{2})$$

$$= f_{S \wedge T}(x_{2},y_{2})$$

Thus $f_S \wedge f_T$ is SI-action on double N-fuzzy M(G)–group over U.

Note that $f_s \vee f_T$ is not SI-action on double N-fuzzy M(G)–group over U.

Example 3.9: Assume $U = p_3$ is the universal set. Let $S = Z_3$ and $H = \left\{ \begin{bmatrix} a & a \\ b & b \end{bmatrix} / a, b \in Z_3 \right\}$

 2×2 matrices with Z_3 terms are set of parameters. We define SI-action on double N-fuzzy M(G)–group f_S over U = p_3 by

$$f_S(0)=p_3$$

$$f_S(1) = \{(1), (12), (132)\}$$

$$f_s(2) = \{(1), (12), (123), (132)\}$$

We define SI-action on M-N-module f_H over $U = p_3$ by

$$f_H\left\{\begin{bmatrix}0&0\\0&0\end{bmatrix}\right\}=p_3$$

$$f_H\left\{\begin{bmatrix}0&0\\1&1\end{bmatrix}\right\} = \{(1),(12),(132)\}$$

Then $f_s \vee f_T$ is not SI-action on double N-fuzzy M(G)–group over U.

Definition 3.10: Let f_S, g_T be SI-action on double N-fuzzy M(G)—group over U. Then product of fuzzy SI-action on double N-fuzzy M(G)—group f_S and g_T is defined as $f_S \times g_T = h_{S \times T}$, where $h_{S \times T}(x, y) = f_S(x) \times g_T(y)$ for all $(x, y) \in S \times T$.

Theorem 3.11: If f_S and g_T are SI-action on double N-fuzzy M(G)–group over U. Then so is $f_S \times g_T$ over U×U.

Proof: By definition-3.2, let $f_S \times g_T = h_{S \times T}$, where $h_{S \times T}(x, y) = f_S(x) \times g_T(y)$ for all $(x, y) \in S \times T$.

Then for all (x_1, y_1) , $(x_2, y_2) \in S \times T$ and $(g_1, g_2) = M(G) \times M(G)$.

Vol. 8, Issue 3, March 2019,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$h_{S\times T}(((x_{1},y_{1}) - (x_{2},y_{2}))) = h_{S\times T}((x_{1+}x_{2},y_{1+}y_{2}))$$

$$= f_{S}((x_{1+}x_{2},\times g_{T}((y_{1+}y_{2})))$$

$$\supseteq (f_{S}(x_{1}) \cap f_{S}(x_{2})) \times (g_{T}(y_{1}) \cap g_{T}(y_{1}))$$

$$= (f_{S}(x_{1}) \times g_{T}(y_{1})) \cap (f_{S}(x_{2}) \times g_{T}(y_{1})) \cap (f_{S}(x_{2}) \times g_{T}(y_{1}))$$

$$= h_{S\times T}(x_{1},y_{1}) \cap h_{S\times T}(x_{2},y_{2})$$

$$= h_{S\times T}((g_{1},g_{2})(x_{2},y_{2})) = h_{S\times T}(g_{1}x_{2},g_{2}y_{2})$$

$$= f_{S}(g_{1}x_{2}) \times g_{T}(g_{2}y_{2})$$

$$= h_{S\times T}(x_{2},y_{2})$$

Hence $f_S \times g_T = h_{S \times T}$ is SI-action on double N-fuzzy M(G)–group over U.

Theorem 3.12: If f_S and h_S are SI-action on double N-fuzzy M(G)–group over U, then so is $f_S \cap h_S$ over U.

Proof: Let $x, y \in s$ and $g \in M(G)$ then

$$(f_{S} \cap h_{S})((x+y)) = f_{S}((x+y)) \cap h_{S}((x+y))$$

$$\supseteq (f_{S}(x) \cap f_{S}(y)) \cap (h_{S}(x) \cap h_{S}(y))$$

$$= (f_{S}(x) \cap h_{S}(x)) \cup (f_{S}(y) \cap h_{S}(y))$$

$$= (f_{S} \cap h_{S})(x) \cap (f_{S} \cap h_{S})(y)$$

$$(f_{S} \cap h_{S})(gx) = f_{S}(gx) \cap h_{S}(gx)$$

$$\supseteq f_{S}(x) \cap h_{S}(x)$$

$$= (f_{S} \cap h_{S})(x).$$

Therefore, $(f_S \cap h_S)$ is SI-action on double N-fuzzy M(G)–group over U.

4. SI-ACTION ON DOUBLE N-FUZZY M(G) -IDEAL STRUCTURES

Definition 4.1: Let S be a double N-fuzzy M(G)–group and f_S be a soft set over U. Then f_S is called SI-action on double N-fuzzy M(G)–ideal of S over U if the following conditions are satisfied:

(i)
$$f_s((x+y)) \supseteq f_s(x) \cap f_s(y)$$

Vol. 8, Issue 3, March 2019,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

(ii)
$$f_s(-x) = f_s(x)$$

(iii)
$$f_s(x+y-x) \supseteq f_s(y)$$

(iv)
$$f_s(g(x+y)-gx) \supseteq f_s(y)$$
 for all $x, y \in S$ and $g \in M(G)$.

Here, note that

$$f_s(x+y) \supseteq f_s(x) \cap f_s(y)$$
 and $f_s(-x) = f_s(x)$ imply $f_s(x-y) \supseteq f_s(x) \cap f_s(y)$

Example 4.2: Consider $M(G) = \{0, x, y, z\}$ with the following tables

+	0	X	у	Z
0	0	X	у	Z
X	X	0	Z	у
у	У	Z	0	X
Z	Z	у	X	0

•	0	X	у	Z
0	0	0	0	0
X	0	0	0	X
у	0	X	у	у
Z	0	X	у	Z

Let S = M(G) be the parameters and $U = D_2$, dihedral group, be the universal set. We define a N-fuzzy soft set f_s over U by $f_s(0) = D_2$, $f_s(x) = \{e, b, ba\}$, $f_s(y) = \{a, b\}$, $f_s(z) = \{b\}$.

Then, one can show that f_s is SI-action on double N-fuzzy M(G)-ideal of S over U.

Example 4.3: Consider $M(G) = \{0,1,2,3\}$ with the following tables

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

•	0	X	у	Z
0	0	0	0	0
X	0	1	0	1
у	0	3	0	3
Z	0	2	0	2

Let S=M(G) be the set of parameters and $U=Z^+$ be the universal set. We define a N-fuzzy soft set f_s over U by

$$f_s(0) = \{1,2,3,5,6,7,9,10,11,17\}$$

 $f_s(1) = f_s(3) = \{1,3,5,7,9,11\}$
 $f_s(2) = \{1,5,7,9,11\}$

Vol. 8, Issue 3, March 2019,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Since,
$$f_s(2.(3+1)-2.3) = f_s(2.1-2.3) = f_s(3-3) = f_s(0) \nsubseteq f_s(1)$$

Therefore, f_s is not SI-action on double N-fuzzy M(G) –ideal over U.

It is known that if M(G) is a zero-symmetric near-ring, then every double N-fuzzy M(G)-ideal of S is also double N-fuzzy M(G)-group of S. Here, we have an analog for this case.

Theorem 4.4: Let M(G) be a zero- symmetric near-ring. Then, every SI-action on double N-fuzzy M(G) –ideal is SI-action on double N-fuzzy M(G)–group over U.

Proof: Let f_s be an SI-action on double N-fuzzy M(G)-ideal on S over U. Since $f_s(g(x+y)-gx) \supseteq f_s(y)$, for all $x,y \in S$, and $g \in M(G)$ in particular for x=0, it follows that $f_s(g(0+y)-g.0) = f_s(gy-0) = f_s(y) \supseteq f_s(y)$.

Since the other condition is satisfied by definition-4.1, f_s is SI-action on double N-fuzzy M(G)-ideal of S over U.

Theorem 4.5: Let f_s be SI-action on double N-fuzzy M(G)—ideal of S and f_T be SI-action on double N-fuzzy M(G)—ideal of T over U. Then $f_s \wedge f_T$ is SI-action on double N-fuzzy M(G)—ideal of S×T over U.

Theorem 4.6: If f_s is SI-action on double N-fuzzy M(G)-ideal of S and f_T be SI-action on double N-fuzzy M(G)-ideal of T over U, then $f_s \times f_T$ is SI-action on double N-fuzzy M(G)-ideal over U×U.

Theorem 4.7: If f_s and h_s are two SI-action on double N-fuzzy M(G)–group of S over U, then $f_s \cap h_s$ is SI-action on double N-fuzzy M(G)–ideal over U.

5. APPLICATIONS OF DOUBLE N-FUZZY SI-ACTION ON M(G) –IDEAL

In this section, we give the applications of soft image, soft pre-image, lower α -inclusion of soft sets and double N-fuzzy M(G)-group homomorphism with respect to SI-action on double N-fuzzy M(G) –group and double N-fuzzy M(G)–ideal.

Theorem 5.1: If f_s is SI-action on double N-fuzzy M(G)-ideal of S over U, then $S^f = \{x \in S \mid f_s(x) = f_s(0)\}$ is a double N-fuzzy M(G)-ideal of S.

Proof: It is obvious that $0 \in S^f$ we need to show that

- (i) $x-y \in S^f$,
- (ii) $s+x-s \in S^f$ and
- (iii) $g(s+x)-gs \in S^f$ for all $x,y \in S^f$ and $g \in M(G)$ and $s \in S$.

If $x,y \in S^f$, then $f_s(x)=f_s(y)=f_s(0)$.

Vol. 8, Issue 3, March 2019,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

By proposition-3.1,

 $f_{s}(0) \supseteq f_{s}(x-y), f_{s}(0) \supseteq f_{s}(s+x-s), \text{ and } f_{s}(0) \supseteq f_{s}(g(s+x)-gs) \text{ for all } x,y \in S^{f} \text{ and } g \in M(G) \text{ and } s \in S.$

Since f_s is fuzzy SI-action on M(G) –ideal of S over U, then for all $x,y \in S^f$ and $g \in M(G)$ and $s \in S$.

(i)
$$f_s((x-y)) \supseteq f_s(x) \cap f_s(y) = f_s(0)$$
.

(ii)
$$f_s(s+x-s) \supseteq f_s(x) = f_s(0)$$
.

(iii)
$$f_s(g(s+x)-gs) \supseteq f_s(x) = f_s(0)$$
.

Hence $f_{s}(x-y) = f_{s}(0)$, $f_{s}(s+x-s) = f_{s}(0)$ and $f_{s}(g(s+x)-gs) = f_{s}(0)$, for all $x,y \in S^{f}$ and $g \in M(G)$ and $s \in S$.

Therefore S^f is double N-fuzzy M(G)—ideal of S.

Theorem 5.2: Let f_s be soft set over U and α be a subset of U such that $\emptyset \supseteq \alpha \supseteq f_s(0)$. If f_s is SI-action on double N-fuzzy M(G)-ideal over U, then $f_s^{\supseteq \alpha}$ is a double fuzzy M(G)-ideal of S.

Proof: Since $f_s(0) \supseteq \alpha$, then $0 \in f_s^{\supseteq \alpha}$ and $\emptyset \neq f_s^{\subseteq \alpha} \supseteq S$. Let $x, y \in f_s^{\supseteq \alpha}$, then $f_s(x) \supseteq \alpha$ and $f_s(y) \supseteq \alpha$. We need to show that

(i)
$$x-y \in f_s^{\supseteq \alpha}$$

(ii) s+x-s
$$\in f_s^{\supseteq \alpha}$$

(iii) g(s+x)- $gs \in f_s^{\supseteq \alpha}$ for all $x,y \in f_s^{\supseteq \alpha}$ and $n \in \mathbb{N}$ and $s \in \mathbb{S}$.

Since f_s is SI-action on M(G) –ideal over U, it follows that

(i)
$$f_s((x-y)) \supseteq f_s(x) \cap f_s(y) \supseteq \alpha \cap \alpha = \alpha$$
,

(ii)
$$f_s(s+x-s) \supseteq f_s(x) \supseteq \alpha$$
 and

(iii)
$$f_s(g(s+x)-gs) \supseteq f_s(x) \supseteq \alpha$$
. Thus, the proof is completed.

Theorem 5.3: Let f_s and f_T be soft sets over U and χ be an M(G)-isomorphism from S to T. If f_s is SI-action on double N-fuzzy M(G)-ideal of S over U, then $\chi(f_s)$ is SI-action on double N-fuzzy M(G)-ideal of T over U.

Proof: Let δ_1, δ_2 and $n \in \mathbb{N}$. Since χ is surjective, there exists $s_1, s_2 \in \mathbb{S}$ such that $\chi(s_1) = \delta_1$ and $\chi(s_2) = \delta_2$. Then

$$(\chi f_s) \, ((\delta_I \text{-} \delta_2)) = \bigcup \, \{\, f_s(\mathbf{s}) \, / \, \mathbf{s} \in \mathbf{S} \, , \, \chi(\mathbf{s}) = \delta_I \text{-} \delta_2 \, \}$$

Vol. 8, Issue 3, March 2019,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$= \bigcup \{ f_{s}(s) / s \in S, s = \chi^{-1}(\delta_{1} - \delta_{2}) \}$$

$$= \bigcup \{ f_{s}(s) / s \in S, s = \chi^{-1}(\chi(s_{1} - s_{2})) = s_{1} - s_{2} \}$$

$$= \bigcup \{ f_{s}(s_{1} - s_{2}) / s_{i} \in S, \chi(s_{i}) = \delta_{i}, i = 1, 2, ... \}$$

$$= \bigcup \{ f_{s}(s_{1}) \cap f_{s}(s_{2}) / s_{i} \in S, \chi(s_{i}) = \delta_{i}, i = 1, 2, ... \}$$

$$= \bigcup \{ \bigcup \{ f_{s}(s_{1}) / s_{1} \in S, \chi(s_{1}) = \delta_{1} \} \} \cap \{ \bigcup \{ f_{s}(s_{2}) / s_{2} \in S, \chi(s_{1}) = \delta_{1} \} \} \cap \{ \bigcup \{ f_{s}(s_{2}) / s_{2} \in S, \chi(s_{1}) \in S, \chi(s_{1}) = \delta_{1} \} \} \cap \{ \bigcup \{ f_{s}(s_{2}) / s_{2} \in S, \chi(s_{1}) \in S, \chi(s_{1})$$

S, $\chi(\square 2) = \square 2$

$$= (\chi(f_{s})) (\delta_{1}) \cap (\chi(f_{s})) (\delta_{2})$$
Also, $(\chi f_{s}) (\delta_{1} + \delta_{2} - \delta_{1}) = \bigcup \{ f_{s}(s) / s \in S, \chi(s) = \delta_{1} + \delta_{2} - \delta_{1} \}$

$$= \bigcup \{ f_{s}(s) / s \in S, s = \chi^{-1}(\delta_{1} + \delta_{2} - \delta_{1}) \}$$

$$= \bigcup \{ f_{s}(s) / s \in S, s = \chi^{-1}(\chi(s_{1} + s_{2} - s_{1})) = s_{1} + s_{2} - s_{1} \}$$

$$= \bigcup \{ f_{s}(s_{1} + s_{2} - s_{1}) / s_{i} \in S, \chi(s_{i}) = \delta_{i}, i = 1, 2, ... \}$$

$$\supseteq \bigcup \{ f_{s}(s_{2}) / s_{2} \in S, \chi(s_{2}) = \delta_{2} \}$$

Furthermore,

$$\begin{split} (\chi f_s) & \left(\mathbf{g}(\delta_1 + \delta_2) - \mathbf{g}\delta_1 \right) = \cup \left\{ f_s(\mathbf{s}) / \mathbf{s} \in \mathbf{S}, \chi(\mathbf{s}) = \mathbf{g}(\delta_1 + \delta_2) - \mathbf{g}\delta_1 \right\} \\ & = \cup \left\{ f_s(\mathbf{s}) / \mathbf{s} \in \mathbf{S}, \mathbf{s} = \chi^{-1}(\mathbf{g}(\delta_1 + \delta_2) - \mathbf{g}\delta_1) \right\} \\ & = \cup \left\{ f_s(\mathbf{s}) / \mathbf{s} \in \mathbf{S}, \mathbf{s} = \mathbf{g}(s_1 + s_2) - \mathbf{g}s_1 \right\} \\ & = \cup \left\{ f_s(\mathbf{g}(s_1 + s_2) - \mathbf{g}s_1) / s_i \in \mathbf{S}, \chi(s_i) = \delta_i, i = 1, 2, \ldots \right\} \\ & \supseteq \cup \left\{ \frac{f_s(s_2)}{s_2} \in \mathbf{S}, \chi(s_2) = \delta_2 \right\} \\ & = (\chi(f_s)) (\delta_2). \end{split}$$

Hence, $\chi(f_s)$ is SI-action on double N-fuzzy M(G)-ideal of T over U.

 $= (\chi(f_s)) (\delta_2)$

Theorem 5.4: Let f_s and f_T be soft sets over U and χ be an M-N-isomorphism from S to T. If f_T is SI-action on double N-fuzzy M(G)-ideal of T over U, then $\chi^{-1}(f_T)$ is SI-action on double N-fuzzy M(G)-ideal of S over U.

Proof: Let $s_1, s_2 \in S$ and $n \in N$. Then

$$(\chi^{-1}(f_T)) ((s_1 - s_2)) = f_T(\chi(s_1 - s_2))$$

$$= f_T(\chi(s_1) - \chi(s_2))$$

$$\supseteq f_T(\chi(s_1)) \cap f_T(\chi(s_2))$$

Vol. 8, Issue 3, March 2019,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$= (\chi^{-1}(f_{T}))(s_{1}) \cup (\chi^{-1}(f_{T}))(s_{2}).$$
Also, $(\chi^{-1}(f_{T}))(s_{1}+s_{2}-s_{1}) = f_{T}(\chi(s_{1}+s_{2}-s_{1}))$

$$= f_{T}(\chi(s_{1})+\chi(s_{2})-\chi(s_{1}))$$

$$\supseteq f_{T}(\chi(s_{2})) = (\chi^{-1}(f_{T}))(s_{2})$$
Furthermore, $(\chi^{-1}(f_{T}))(g(s_{1}+s_{2})-ng) = f_{T}(\chi(g(s_{1}+s_{2})-ng))$

$$= f_{T}(g(\chi(s_{1})+\chi(s_{2}))-g\chi(s_{1}))$$

$$\supseteq f_{T}(\chi(s_{2})) = (\chi^{-1}(f_{T}))(s_{2})$$

Hence, $(\chi^{-1}(f_T))$ is SI-action on double N-fuzzy M(G)–ideal of S over U.

6. CONCLUSION

In this paper, we have defined a new type of double N-fuzzy M(G)—group action on a soft set, called SI-action on double N-fuzzy M(G)—group by using the soft sets. This new concept picks up the soft set theory and double N-fuzzy M(G)—group theory together and therefore, it is very functional for obtaining results in the mean of M(G)—group structure. Based on this definition, we have introduced the concept of SI-action on double N-fuzzy M(G)—ideal. We have investigated these notions with respect to soft image, soft pre-image and upper α -inclusion of soft sets. Finally, we give some application of SI-action on M-N-ideal to double N-fuzzy M(G)—group theory.

Future Work: To extend this study, one can further study the other algebraic structures such as different algebra in view of their SI-actions.

REFERENCES

- [1] Acar U., Koyuncu F., Tanay B., Soft sets and soft rings, Comput. Math. Appl., 59(2010), 3458-3463.
- [2] Aktas. H., C. agman N., Soft sets and soft groups, Inform. Sci., 177(2007), 2726-2735.
- [3] Ali M.I., Feng F., Liu X., Min W.K., Shabir M., On some new operations in soft set theory, Comput. Math. Appl., 57(2009), 1547-1553.
- [4] Atagun A.O., Sezgin A., Soft substructures of rings, fields and modules, Comput. Math. Appl., 61(3)(2011), 592-601.
- [5] Babitha K.V., Sunil J.J., Soft set relations and functions, Comput. Math. Appl., 60(7)(2010), 1840-1849.

Vol. 8, Issue 3, March 2019,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

- [6] Cagman N., Enginoglu S.,Soft matrix theory and its decision making, Comput. Math. Appl., 59(2010), 3308-3314.
- [7] Cagman N, Enginoglu S., Soft set theory and uni-int decision making, Eur. J. Oper. Res., 207(2010), 848-855.
- [8] Cagman N., C, itak F., Aktas, H., Soft int-groups and its applications to group theory, Neural Comput. Appl., DOI: 10.1007/s00521-011-0752-x.
- [9] Cagman N., Sezgin A., Atagun A.O., Soft uni-groups and its applications to group theory, (submitted).
- [10] Cagman N., Sezgin A., Atagun A.O., α-inclusions and their applications to group theory, (submitted).
- [11] Feng F., Jun Y.B., Zhao X., Soft semirings, Comput. Math. Appl., 56(2008), 2621–2628.
- [12] Feng F., Liu X.Y., Leoreanu-Fotea V., Jun Y.B., Soft sets and soft rough sets, Inform. Sci., 181(6)(2011), 1125-1137.
- [13] Feng F., Li C., Davvaz B., Ali M.I., Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft Comput., 14(6)(2010), 899-911.
- [14] Jun Y.B., Soft BCK/BCI-algebras, Comput. Math. Appl., 56(2008), 1408 -1413.
- [15] Jun Y.B., Park C.H., Applications of soft sets in ideal theory of BCK/ BCI-algebras, Inform. Sci., 178(2008), 2466-2475.
- [16] Jun Y.B., Lee K.J., Zhan J., Soft p-ideals of soft BCI-algebras, Comput. Math. Appl., 58(2009), 2060-2068.
- [17] Jun Y.B., Lee K.J., Park C.H., Soft set theory applied to ideals in d-algebras, Comput. Math. Appl., 57(3)(2009), 367-378.
- [18] Kazancı O., Yılmaz S,., Yamak S., Soft sets and soft BCH-algebras, Hacet. J. Math. Stat., 39(2)(2010), 205-217.
- [19] Maji P.K., Biswas R., Roy A.R., Soft set theory, Comput. Math. Appl., 45(2003), 555-
- 562. [20] Maji P.K., Roy A.R., Biswas R., An application of soft sets in a decision making problem, Comput. Math. Appl., 44(2002), 1077-1083.
- [21] Majumdar P., Samanta S.K., On soft mappings, Comput. Math. Appl., 60 (9)(2010), 2666-2672.
- [22] Molodtsov D., Soft set theory-first results, Comput. Math. Appl., 37(1999), 19-31.

Vol. 8, Issue 3, March 2019,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

- [23] Molodtsov D.A., Leonov V.Yu., Kovkov D.V., Soft sets technique and its application, Nechetkie Sistemy i Myagkie Vychisleniya, 1(1)(2006), 8-39.
- [24] Pilz G., Near-rings, North Holland Publishing Company, Amsterdam-New York-Oxford, 1983.
- [25] Sezgin A., Atagun A.O., Aygun E., A note on soft near-rings and idealistic soft near-rings, Filomat., 25(1)(2011), 53-68.
- [26] Sezgin A., Atagun A.O., On operations of soft sets, Comput. Math. Appl., 61(5)(2011), 1457-1467.
- [27] Wendt G., On Zero Divisors in Near-Rings, Int. J. Algebra, 3(1)(2009), 21-32.
- [28] Zhan J., Jun Y.B., Soft BL-algebras based on fuzzy sets, Comput. Math. Appl., 59(6)(2010), 2037-2046.
- [29] Zou Y., Xiao Z., Data analysis approaches of soft sets under incomplete information, Knowl-Based Syst., 21(2008), 941-945.